
A NOTE ON SCENARIOS OF METASTABLE WATER

Jan JIRSÁKa1,b,* and Ivo NEZBEDAa2,b

a E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals,
Academy of Sciences of the Czech Republic, v.v.i., 165 02 Prague 6, Czech Republic;
e-mail: 1 jirsak@icpf.cas.cz, 2 ivonez@icpf.cas.cz

b Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic

Received November 3, 2009
Accepted February 8, 2010

Published online May 24, 2010

Dedicated to Professor Ivo Nezbeda on the occasion of his 65th birthday.

A recently developed molecular-based equations of state for water are analyzed with respect
to the behavior of the liquid spinodal curve. It is shown that all of them yield the spinodal
exhibiting a minimum in accordance with Speedy’s stability-limit conjecture and with the
behavior predicted by the accurate (but purely empirical) IAPWS-95 equation. It means that
the considered equations of state give consistent results but qualitatively different from
those resulting from available computer simulations, which yield a monotonic spinodal line.
Keywords: Metastable water; Spinodal; Scenarios; Perturbation theory; Simulation; Equation
of state; Thermodynamics.

The behavior of the liquid spinodal curve, i.e., the locus where liquid loses
its mechanical stability, is a key feature for explaining phenomena in
metastable liquid water. The core of the discussion is the concept of a re-
tracing spinodal, which is the basic feature of Speedy’s ‘stability-limit con-
jecture’1,2. Speedy estimated the locus of the stability limit of liquid water
by extrapolating experimental data and found that the spinodal pressure
was passing through a minimum at about –200 MPa near 30 °C. He con-
cluded that there was a single continuous line bounding the entire region
of metastability including superheated, stretched, and supercooled liquid
(see a sketch in Fig. 1). Apparent divergence of response functions in the vi-
cinity of limits of supercooling was then attributed to approaching the
spinodal locus.

Deeply metastable regions of water are experimentally accessible only
with great difficulties. An indirect experimental source of information
about limits of stability of stretched and superheated liquid are cavitation
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experiments3,4. In contrast to spinodal instability, cavitation is a kinetical-
ly driven phenomenon and its onset depends on the experimental setup
(the same applies for nucleation of liquid from vapor). The spinodal itself
is an ultimate boundary of the metastable region and no experimentally
measurable limit of stability, including the cavitation pressure, can reach it.
Whether it can be approached close enough to enable to draw unbiased
conclusions about its behavior remains still unclear. Consequently, inter-
pretation of the cavitation measurements in terms of the shape of the liq-
uid spinodal remains thus indefinite. For a discussion on kinetic limits of
stability see a series of papers by Kiselev5–7.

There are empirical (but extremely accurate) equations of state (EOS’s) de-
veloped for industrial purposes by fitting a huge body of available experi-
mental data on water. The one highly recommended and most frequently
employed is the IAPWS-95 equation8. When this equation is used in the
metastable region, it yields a retracing spinodal curve providing thus sup-
port for Speedy’s scenario. Figure 7.54 in ref.8 shows the IAPWS-95 spinodal
along with those calculated from two older empirical equations; they all
retrace. However, with respect to a purely empirical form of the considered
EOS’s, any extrapolation must be taken with caution.

In computational studies, attempts to access metastable parts of water
phase diagram have been made by means of molecular simulation on realis-
tic models. There are results available for ST2 9–12, TIP4P 10,13, SPC/E 14,15,
TIP5P 16 and polarizable17 models of water. All of the simulation studies
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FIG. 1
A schematic picture of Speedy’s stability-limit conjecture1,2. Pspin stands for the spinodal line,
Psat is the saturated-vapor line (boiling point), Pmelt indicates the melting line, and CP stands
for the vapor–liquid critical point



cited above exhibit a non-retracing, monotonic spinodal in contrast to
Speedy’s conjecture. Instead, they suggest the occurrence of the liquid–
liquid critical point, introduced by Poole et al.9, accounting for the be-
havior of response functions in supercooled region. Available simulation
studies on the liquid–liquid transition in water were summarized by
Brovchenko and Oleinikova18.

Apart from ‘realistic’ simulations, calculations have been performed on
simplified models capturing the essence of water’s bonding properties.
Studies on lattice models exhibit the spinodal curve with a minimum19,20 or
a so-called singularity-free scenario21. Poole et al.22 proposed an extension
of the van der Waals equation which incorporates hydrogen bonding. This
equation yields the liquid–liquid critical point. When the bonding energy
decreases under certain threshold, the liquid–liquid critical point enters the
unstable part of the isotherm resulting in the retracing spinodal curve, sug-
gesting that the two scenarios “may be fundamentally related”. There is a
similar work of Truskett et al.23, where an analytical equation of state yields
either the liquid–liquid critical point or the singularity-free scenario de-
pending on geometric parameters of bonding. For a review of theories of
metastable water, we refer the reader to the paper by Debenedetti24.

As one can see above, there are several groups of methods attempting to
reveal the nature of stability limits of liquid water; nevertheless, there is no
consensus among them. Moreover, each of the above-described method
seems to suffer from some inherent defects. The spinodal curve is, in princi-
ple, directly unreachable both from experiment and conventional simula-
tions and must be obtained by extrapolation or by special methods.
Concerning EOS’s, here the spinodal results from their unphysical continu-
ous behavior throughout the entire temperature–density plane and need
not thus represent the actual limit of stability. In the case of molecular sim-
ulation, the inability of the conventional NVT ensemble to correctly main-
tain liquid–vapor metastability appears to discard ‘spinodals’ determined by
molecular simulations; an exception is the work of Brovchenko et al.11,
who employ a restricted NPT ensemble ensuring homogeneity of the fluid
in the simulation box. Other authors cited above wrongly attributed the
simulated ‘finite-size’ loops, which are actually stable, to metastable and
unstable portions of the true van der Waals loops, extrema of which consti-
tute spinodals. The above-described feature of the constant-volume simula-
tion has been known25,26 for a long time and it has been pointed out again
recently on several occasions18,27–29.

Within the development of a molecular theory of polar and associating
fluids, Nezbeda and Weingerl30 proposed some time ago a semi-theoretical
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EOS for water. The equation is based on a perturbation expansion about a
short-range reference and its parameters were obtained by fitting to the ex-
perimental vapor–liquid equilibrium data. The equation (further referred to
as the NW equation) performs very well over a wide range of temperatures
and densities, and, with respect to its sound theoretical footing, its exten-
sion to the metastable region may be less questionable than in the case of
purely empirical EOS’s. A similar procedure has been used by the present
authors to develop another semi-theoretical EOS 31 based on the TIP4P wa-
ter model32.

Following research along the same line we have recently developed a sort
of a ‘first-principle’ EOS 33. The equation results from a purely theoretical
treatment using the intermolecular interaction potential obtained, by well-
defined approximations, from a realistic parent model (TIP4P water) as
the only input and applying Wertheim’s thermodynamic perturbation
theory34,35 of the 2nd order36. This EOS produces all interesting anomalies
observed on real water, including the temperature of maximum density
(TMD) and its shift towards lower temperatures upon compression. But,
what is even more important is the fact that this EOS is free of any addi-
tional fitting to experimental data and removes thus one uncertainty in-
herent to the empirical and semi-empirical EOS’s adjusted to experiment:
unreliable extrapolation.

With all these appealing features of the aforementioned EOS’s, it is
tempting to use them also in the metastable range and to contribute to yet
unresolved controversies as for the behavior of the spinodal. In the next
section Theory we present, in a concise form, the considered EOS’s, and in
Results and Discussion we show and discuss the features of the obtained
spinodal. Conclusions are then summarized in the last section.

THEORY

In terms of an analytical equation of state, the liquid spinodal curve can be
defined as a set of points where the relations

∂
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are satisfied. In the above expressions P is the pressure, V the volume, and T
the temperature.

A general molecular-based approach to obtain an EOS in an analytic form
is via a perturbation expansion37. It means, the given interaction potential,
u, is split into a short-range reference part, uref, and a perturbation part, the
latter having a negligible effect on the structure38 of the fluid. The corre-
sponding EOS assumes thus the form

z z z= +ref ∆ (3)

where z is the compressibility factor, z = βP/ρ, β = 1/kBT, kB is the
Boltzmann constant and ρ is the number density. The short-range part in-
cludes both repulsive and attractive interactions39, and, in the case of polar
and associating fluids, like water, it captures also a good deal of the thermo-
dynamic properties of the system at hand40–42. It is thus reasonable to write,
at the zeroth level of approximation,

z z≈ ref . (4)

When dealing with water, the total potential u is given by non-electro-
static interactions, typically the Lennard–Jones (LJ) located at the oxygen
atom, and electrostatic interactions between certain Coulombic sites. The
corresponding short-range reference, uref, incorporating both these types of
interactions is still too complex for its properties to be estimated directly. It
is therefore mapped onto the so-called primitive model (PM)43,44 so that
Eq. (3) becomes

z z z= +PM ∆ . (5)

The PM copies the geometry of the realistic parent model and approximates
the realistic force field by hard-sphere (HS) and square-well (SW) interacti-
ons to mimic repulsive and attractive forces between the sites, respectively.
The complete intermolecular interaction energy of such a PM assumes then
the form
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where (1,2) is the short-hand notation for the dependence of u on both
the position and orientation of molecules 1 and 2, dOO is the diameter of an
oxygen-centered hard sphere representing a radially symmetric component
of repulsive forces, rij is the distance between site i on molecule 1 and site j
on molecule 2, and X and Y symbolize ‘positive’ and ‘negative’ Coulombic-
like sites, respectively. The summation in the second term on the right-
hand side of Eq. (6) runs over the pairs of like sites and that in the third
term over the pairs of unlike sites. Further,

u r dHS ( ; ) = +∞ for r < d

u r dHS ( ; ) = 0 for r > d (7)

and

u rSW HB( ; )λ ε= − for r < λ

u rSW ( ; )λ = 0 for r > λ (8)

are the hard-sphere and the square-well interactions, respectively. The
first two repulsive terms on the right-hand side of Eq. (6) together define a
pseudo-hard body (PHB)45. For further details on the PM we refer the reader
to the original papers43,44.

The theoretical basis of EOS’s for associating fluids is the Wertheim ther-
modynamic perturbation theory (TPT)34–36 used either in the first (TPT1) or
second (TPT2) order to derive an EOS for the reference term, the primitive
model. Nezbeda and Weingerl30 derived a semi-theoretical EOS in the
form (3) using only the functional form of the TPT1 and adjusted all its
parameters to experimental data. The perturbation term was given by

∆z z z= +disp DD (9)

where for the contribution of the dispersion and dipole–dipole interactions,
zdisp and zDD, respectively, they used the simplest expressions available with
parameters adjusted, again, to experimental data. For the explicit EOS for-
mula and its parameters we refer the reader to the original paper30.

Another attempt to derive a theoretically-footed EOS for water was made
by Jirsák and Nezbeda31. They followed the same procedure as that used in
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the development of the NW equation, except for the reference term, which
was derived within the TPT2, and they fitted the equation to simulation
data for TIP4P water. The resulting EOS reproduces the location of the tem-
perature of maximum density for the considered water model. See the origi-
nal paper31 for details.

As an attempt to derive a truly theoretical EOS, i.e., to start from a given
Hamiltonian and to avoid resorting to any experimental data, Jirsák and
Nezbeda33 have considered recently an EOS in the form (4) and used the
TPT2 for the PM descending from the TIP4P potential. Within the TPT2,
the compressibility factor of the PM is given by

z z m xPM PHB= + − +
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where zPHB is the compressibility factor of the underlying PHB fluid, ρ* =
ρd OO

3 is the reduced number density, and the two terms in the derivative
account for hydrogen bonding mimicked by the SW attraction. Here dOO is
temperature dependent, in contrast to ref.31. The compressibility factor of
PHB’s is known in a parametrized form,
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where η = (π/6)ρ* denotes the packing fraction and αi are numerical con-
stants given for the considered models in ref.46. For x0, we use the expres-
sion
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Integers m and n stand for the number of sites X and Y, respectively; for the
PM descending from the TIP4P potential, PM/TIP4P, m = 2 and n = 1. Quan-
tities I+– and I+–+ are fundamental integrals of the TPT2; see ref.36 for details.

RESULTS AND DISCUSSION

First we present scenarios calculated using the two semi-theoretical EOS’s
that consist of both the reference and perturbation terms. In Fig. 2 we plot
the calculated spinodal line, saturated-vapor pressure, and the locus of the
TMD for the NW EOS 30, i.e., the full equation of state for real water. As can
be seen, the spinodal line exhibits a minimum – at the point where it also
meets the TMD line, as required by thermodynamics1,2. Figure 3 shows
then results calculated using the TPT2-based equation of state31 for the
TIP4P model of water. The situation is quite similar to that for the NW
equation, but here the TMD line crosses the melting line, as it should.
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FIG. 2
Scenario for the EOS of Nezbeda and Weingerl30. Dashed line (Psat) represents the saturated-
vapor pressure, dotted line (TMD) demarcates the locus of density maxima, and full line (Pspin)
is the liquid spinodal. The vapor–liquid critical point (CP) is indicated by a circle. Dash-dotted
melting line (Pmelt) is calculated from the equation48 parametrizing experimental data for real
water



As it has been already mentioned, the short-range reference system cap-
tures completely the structure of the full parent system and also a good deal
of its thermodynamics. In a recent study33, we have thus analyzed the be-
havior of water resulting only from the appropriately-defined primitive
model and we apply this approach also in the present paper to study meta-
stable water. First, we use this EOS in a straightforward restricted version
with the HS diameter, dOO, set to a fixed value determined from the parent
potential model at the ambient temperature – this is the approach usually
used for PM references. Finally, we employ an unrestricted version, in which
also the diameter dOO is subject to the perturbation treatment, as it should
be, which results then in its temperature dependence. This theoretically-
footed temperature dependence of the diameter distinguishes our recently
developed approach33 from older studies.
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FIG. 3
Scenario for the TIP4P EOS of Jirsák and Nezbeda31. Dashed line (Psat) represents the
saturated-vapor pressure, dotted line (TMD) demarcates the locus of density maxima, and full
line (Pspin) is the liquid spinodal. The vapor–liquid critical point (CP) is indicated by a circle.
Black squares are the melting points of the TIP4P model of water determined by molecular
simulation49; the dash-dotted line is drawn to guide the eyes



Results of the two mentioned versions of the theoretical EOS are given
in Figs 4 and 5 and both exhibit a minimum on the spinodal curve. There
are, however, minor differences in both scenarios. Temperature dependence
of dOO not only brings the density maximum above the zero pressure but
also adds a new feature – a line of density minimum, which ends at a com-
mon point with the line of density maximum (this is necessary for an ana-
lytic density); see Fig. 5. It is worth noting that the value ε/kB = 4123 K
used in Figs 4 and 5 reproduces correctly the location of the TMD of the
TIP4P model, –15 °C at 1 bar (ref.47), when used in the equation with the
temperature-dependent diameter (Fig. 5).

As we have seen, all the presented perturbation equations of state yield
a minimum on the spinodal curve. Nonetheless, one can notice that they
do not retrace, in contrast to Speedy’s stability-limit conjecture1,2, to posi-
tive pressures. A similar behavior of the spinodal curve is observed also in
some lattice models19,20,24. As regards the possibility of the liquid–liquid
transition, no indication of another critical point has been found so far on
isotherms predicted by the presented equations.
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FIG. 4
Scenario for PM/TIP4P with a fixed diameter (dOO = 2.652 Å, ε/kB = 4123 K; other parameters
taken from ref.44). Symbols and lines have the same meaning as in Fig. 3



CONCLUSIONS

Whether the liquid spinodal of water is retracing or not is still a matter of
controversy. On one hand, empirical parametrizations of PVT data of real
water, as well as certain class of molecular-based equations of state, extrapo-
late to a retracing spinodal. On the other hand, spinodals obtained by mo-
lecular simulations exhibit a monotonic trend. Considerations of this
matter should always take account of the fact that there is no direct experi-
mental method making it possible to determine the actual spinodal, i.e.,
the line where conditions (1) and (2) hold true. One can obtain either ex-
trapolation or a kinetic limit of stability preceding the mechanical one. As
regards the theoretical calculations, one is always limited by the method
(involving necessary approximations) and by the appropriateness of the
model employed.
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FIG. 5
Scenario for PM/TIP4P with temperature-dependent diameter dOO

33 (ε/kB = 4123 K). The leg-
end is the same as in Fig. 3, plus there is an additional dotted line of density minima that
meets the TMD line at the point indicated by a cross
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